
J.  Fluid Mech. (1995), vol. 296, pp.  241-269 247 

Pressure structure functions and spectra for locally 
isotropic turbulence 

By REGINALD J. HILL A N D  JAMES M. WILCZAK 
National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 

Environmental Technology Laboratory, Boulder, CO 80303, USA 

(Received 9 August 1994 and in revised form 14 March 1995) 

Beginning with the known relationship between the pressure structure function and the 
fourth-order two-point correlation of velocity derivatives, we obtain a new theory 
relating the pressure structure function and spectrum to fourth-order velocity structure 
functions. This new theory is valid for all Reynolds numbers and for all spatial 
separations and wavenumbers. We do not use the joint Gaussian assumption that was 
used in previous theory. The only assumptions are local homogeneity, local isotropy, 
incompressibility, and use of the Navier-Stokes equation. Specific formulae are given 
for the mean-squared pressure gradient, the correlation of pressure gradients, the 
viscous range of the pressure structure function, and the pressure variance. Of course, 
pressure variance is a descriptor of the energy-containing range. Therefore, for any 
Reynolds number, the formula for pressure variance requires the more restrictive 
assumption of isotropy. For the case of large Reynolds numbers, formulae are given 
for the inertial range of the pressure structure function and spectrum and of the 
pressure-gradient correlation; these are valid on the basis of local isotropy, as are the 
formulae for mean-squared pressure gradient and the viscous range of the pressure 
structure function. Using the experimentally verified extension to fourth-order velocity 
structure functions of Kolmogorov’s theory, we obtain r4I3 and kp7/3 laws for the 
inertial range of the pressure structure function and spectrum. The modifications of 
these power laws to account for the effects of turbulence intermittency are also given. 
New universal constants are defined; these require experimental evaluation. The 
pressure structure function is sensitive to slight departures from local isotropy, 
implying stringent conditions on experimental data, but applicability of the previous 
theory is likewise constrained. The results are also sensitive to compressibility. 

1. Introduction 
The pressure structure function is defined by 

1 

P 
Dp(r)  = - ( ( P - P y ) ,  

where P is pressure and p is density. Unprimed and primed quantities, e.g. P and P ,  
are taken at spatial positions denoted by x and x‘, respectively; also, r = x-x’ and 
r = Irl. Angle brackets denote averaging. Obukhov (1949) related Dp(r) to a two-point 
fourth-order velocity-derivative correlation. Independently, Batchelor (195 1) obtained 
the pressure correlation in terms of this same derivative correlation. In addition, 
Batchelor (195 1) related this derivative correlation, and hence the pressure correlation, 
to the fourth-order divergence of the fourth-order velocity correlation. To obtain 
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tractable results, both of these authors used the joint Gaussian approximation for 
either velocities or velocity derivatives. 

Without using the joint Gaussian approximation, Uberoi (1 953) expressed 
Batchelor’s (1951) formula for the pressure correlation in terms of integrals of linear 
combinations of components of the fourth-order velocity correlation, which is defined 
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= ( U i  uj u$ u;>, (1) 
by 

where ui, uj,  u$, and u; are velocity components. Clearly, Dp(r) could also be expressed 
in terms of integrals of components of Rijkz(r). 

That Dp(r)  should not be expressed in terms of Rijkz(r) (as distinct from its fourth- 
order divergence) is clear from several considerations. First, for small Y and for very 
large Reynolds numbers, D,(r) depends only on the local behaviour of turbulence 
(Yaglom 1949), whereas Rijkz(r) depends on the energy-containing range. Secondly, 
there must be subtraction of very large values of Rijkz(r) to produce the relatively small 
quantities needed to obtain pressure correlations, spectra, and structure functions (Hill 
1993). This implies that measurements of Rijkl(r) would have to be extremely precise 
to produce pressure quantities of modest accuracy. For example, Uberoi (1953) 
measured the linear combinations of components of Rijkz(r) for low-Reynolds-number 
turbulence, calculated the pressure correlation, and found that small differences 
between the relatively large quantities made the resulting pressure correlation extremely 
uncertain. For Dp(r), this problem becomes increasingly severe as r is decreased within 
the inertial and dissipation ranges for very large Reynolds numbers. 

Yaglom (1949) stated that for small r ,  the pressure structure function depends only 
on the local behaviour of turbulence. That is, pressure differences are local quantities. 
We are motivated by our conviction that statistics of products of pressure differences 
and of such products multiplied by velocity differences should be related to statistics 
of velocity differences, not to statistics of velocity products. Guided by this concept, we 
seek another fourth-order velocity statistic that is related to pressure fluctuations but 
does not contain large terms that cancel. A structure function consisting of the product 
of four differences of velocity components is the desired statistic. It is defined by 

Dijkz(r) = ((Ui - u;) ( U j  - u;) (Uk - a;) (az - ul)).  (2) 
This statistic has the simplest possible isotropic form, and one of its components has 
been extensively studied theoretically and experimentally. This allows us to derive a 
simple general formula relating the pressure structure function to integrals of 
components of this fourth-order velocity structure function, and to derive formulae for 
asymptotic ranges. Local isotropy and local scaling apply to both DP(y) and Dijkz(r); 
our derivation relates such scaling. We use the Navier-Stokes equation and 
incompressibility. To obtain the greatest range of applicability, we derive DP(r) on the 
basis of local homogeneity and local isotropy. These assumptions are less restrictive 
than assuming homogeneity and local isotropy or assuming isotropy. 

We express our results in a manner that prepares them for experimental evaluation. 
This is accomplished by reducing the theory to asymptotic expressions that include 
universal constants and parameters that require experimental evaluation. Asymptotic 
results for the inertial range, which are given in 996 and 7, are based on the empirically 
evaluated inertial-range formulae for Dijkz(r) as presented in 0 5. Asymptotic viscous- 
range results are also given in 966 and 7. 

Lengthy derivations are required for our results. These include derivation of a 
formula for the fourth-order divergence of Dijkl(r), as well as many integrations by 
parts. All these derivations were given in detail by Hill (1993). 
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2. The theory of 1948-1951 
In the years 1948-1951, great progress was made in relating a variety of pressure 

statistics to velocity statistics and velocity-derivative statistics. Obukhov (1949) derived 
a differential equation for the pressure correlation, from which he obtained a 
differential equation for Dp(r).  Using this result, Yaglom (1949) derived the mean- 
squared pressure gradient. Heisenberg (1 948) independently derived the mean-squared 
pressure gradient. Batchelor (1951) derived the pressure correlation from which he 
obtained the pressure structure function and spectrum, mean-squared pressure 
gradient, and pressure-gradient correlation. Obukhov & Yaglom (195 1) derived 
differential equations for the pressure correlation and, subsequently, the pressure 
structure function; they solved their differential equations to obtain the pressure 
structure function and derived the mean-squared pressure gradient and pressure- 
gradient correlation. 

To obtain quantitative results from their theories, Obukhov (1949) and Obukhov & 
Yaglom (1951) assumed that velocity derivatives at two spatial points have the joint 
Gaussian probability distribution, whereas Batchelor (1951) assumed that velocities at 
two points are joint Gaussian, and Heisenberg (1948) assumed the statistical 
independence of Fourier components of velocities. Batchelor (195 1) showed that 
Heisenberg’s assumption produced the same results as the joint Gaussian assumption. 

On the basis of the joint Gaussian assumption, Batchelor (1951) and Obukhov 
(1949) showed that the pressure structure function varies as r4l3 within the inertial 
range; hence, the pressure spectrum varies as k-7/3. Because of the use of the joint 
Gaussian assumption, the accuracy of this power-law exponent is in doubt, as are the 
value of the proportionality constant of the inertial-range power law, the mean- 
squared pressure gradient, the transition between the inertial and viscous subranges, 
the effects of turbulence intermittency, and the general formula relating the pressure 
structure function to velocity statistics. Without the joint Gaussian assumption, 
Obukhov & Yaglom (1951) obtained that Dp(r)  K e4/3r4/3 on the basis of dimensional 
analysis using r and energy dissipation rate t: as parameters. Validity of this 
dimensional analysis needs confirmation. 

We next discuss the derivations by Obukhov, Yaglom, and Batchelor with emphasis 
on the assumptions they made regarding local homogeneity versus homogeneity and 
local isotropy versus isotropy. The discussion follows the theory prior to introduction 
of the joint Gaussian assumption. As the first step, the divergence of the Navier-Stokes 
equation gives the following relationship of the Laplacian of pressure to the velocity 
derivatives for incompressible fluid (cf. Batchelor 195 1) : 

Summation is implied over repeated Roman indices. Similar to Obukhov’s (1949) 
notation, ai denotes differentiation with respect to the coordinate xi ,  and aij  denotes 
differentiation with respect to both coordinates xi and xi with x’ held fixed, and 
denotes differentiation with respect to x; and xi with x held fixed. Thus, aii in (3) is the 
Laplacian operator; the rightmost expression in (3) is equivalent to the middle 
expression on the basis of incompressibility. Using (3) and homogeneity (but not 
isotropy), Obukhov (1949) and Obukhov & Yaglom (1951) obtained that 

Dp(Y)l i ikk = -2Q(r), (4 a)  
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where the derivative moment Q(r) is 

~ ( r )  = (ai j(ui Uj) a;,(u; u;))  = (aj uiai uj a; u; a; u;). (4 b) 

A subscript vertical bar followed by indices, as in (4a), denotes differentiation with 
respect to components of r ;  thus, the Laplacian with respect to r operates twice on the 
left-hand side of (4a). Batchelor (1951) used homogeneity and (3) to derive the pressure 
correlation; given homogeneity, as opposed to local homogeneity, his result is 
equivalent to (4a). Batchelor (1951) also defined Q(r) as in (4b), and subsequently used 
homogeneity to express Q(r) as the fourth-order divergence, 

Obukhov & Yaglom (1951) mentioned that ( 4 4  b) are valid on the basis of local 
homogeneity; in the Appendix, we prove that this is correct. 

On the basis of isotropy, Obukhov & Yaglom (1951) solved (4a) for Dp(r),  and 
Batchelor (1951) obtained an equivalent result for the pressure correlation. They 
obtained 

The integration variable y is spatial separation; throughout this paper, y is used instead 
of r when r appears in the limits of integration. The fact that Obukhov & Yaglom 
(1951) derived (5) after Q(r)  is simplified using the joint Gaussian assumption does not 
detract from the generality of their result. It is clear from the content of Yaglom’s 
(1949) paper that he had obtained (5). As mentioned by Obukhov & Yaglom (1951), 
(5) follows from (4a, b) on the less restrictive basis of local isotropy. This is 
immediately clear from ( 4 4  b) because both Dp(r) and Q(r) depend only on the local 
behaviour of turbulence. In the following, we use (5) to obtain new results. 

3. General formula for the pressure structure function and spectrum 

(2), we obtain 

where 

Using the distributive law of multiplication on the product of velocity differences in 

D i j k Z W  = - Sijkz(r) - S i k j Z ( 4  - S i Z j k ( 4  + Mijkm,  (6 4 

(6 b) 

(6 c) 

(6 d)  

and Bi&) = ( (ui-u;)uiu~u,)+((U;-ui)u;u;u;) .  (6 4 

Si&) = ( ( U i  uj - u; 24;) (Uk U ,  - u; 24;)) 

MijkZW = B i j k Z W  + BjikZ(r) + 4 € i j Z ( 4  + B Z i j k W ,  

= (ui uj u k  uZ) + (u; U; U; u ; )  - RijkZ(r) - RkZij(r), 

Note that (6a)  is the average of an algebraic identity; likewise for (6b, c) above. On the 
basis of local homogeneity and incompressibility, we have (see Appendix) 

Performing the fourth-order divergence of (6 c), and assuming homogeneity and 
substituting (4c), we have 

Sijkz(r)lijtz = -2Q(r). (9) 
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In the Appendix, we show the more fundamental result that (9) is valid on the basis of 
local homogeneity with Q(Y), as defined in (4b). Performing the fourth-order 
divergence of (6a) ,  and using (8) and (9), gives 

Q<r> = @ i j d ~ ) l z j , m  (10) 
which is valid on the basis of local homogeneity (see Appendix; isotropy is not needed). 
Comparing (10) and (4c)  shows that Dijkl(r)lijkl is six times greater than Rijkl(~)li jkl ,  
despite the fact that (6a)  expresses Dijkl(r) as the difference of quantities much larger 
than itself (Hill 1993). Thus, compared to Rijkl(r), Dijkl(r)  does not have the same 
degree of cancellation of large terms that produce the small value of Dp(r) .  

Henceforth, we need not repeat which of our results require local homogeneity or 
local isotropy because the required assumptions are obvious from our notation. If the 
vector separation I appears as the argument on the right-hand side of an equation, then 
local homogeneity is required, but local isotropy is not required; examples are (4a) ,  (9), 
and (10). If spacing r, wavenumber k,  or wavenumber component k, appears as an 
argument on the right-hand side of an equation, then local isotropy is required, as is 
local homogeneity (in contrast to homogeneity); an example is (5). If an equation 
violates these rules, then we explicitly state the required assumption; an example is our 
statement regarding the requirement of homogeneity for (4c) .  No assumption is 
required for definitions, so definitions are distinguished by using identity (=) rather 
than equality (=); examples are (l), (2), (4b) ,  and (6b,  d, e) .  

We need a special coordinate system, which we call the preferred coordinate system. 
The preferred coordinate system is Cartesian with its 1-axis aligned along the 
separation vector Y. When we refer to specific components of the tensors, such as 
Dl l l l ( r )  and Dzz33(r), we imply that these components are taken along axes of the 
preferred coordinate system. Thus, we will not repeat mention of the preferred 
coordinate system when we present results or refer to a tensor's components. These 
components depend only on the spacing r, not on all components of I separately. 
Greek indices are used to denote a general index for a component resolved in the 
preferred coordinate system [e.g. DmPP(r)]. No summation is implied by repeated Greek 
indices. 

The tensor Dtjkl(r) is symmetric under interchange of any pair of indices. Therefore, 
assuming local isotropy, its non-zero components in the preferred coordinate system 
are of the form DaapP(r) = ((u,-u;)' ( U , - U ~ ) ~ ) ,  where CL and /3 may be 1, 2 or 3 (see 
Monin & Yaglom 1975, $13.3). Dijkl(r) can be specified by only three functions that are 
linear combinations of these non-zero components. We choose the functions Dll l l ( r ) ,  
DAAAA(r), and Dllvv(r), where h and y are 2 or 3; y can be equal to h or different from 
A. We note that-local isotropy requires 

so 3D2233(r) can replace DAAAA(r) in our formulae. 
3Dzz33( r )  = D ~ ~ ~ ~ ( r ) ,  

Hill (1993) obtained that the fourth-order divergence 

8 12 
D i j k l ( I ) , i j k l  = W l l W  +;DI3:1,(r) + T w \ l ( r )  

The superscripts in parentheses give the order of differentiation with respect to r.  
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Our general formulation for the pressure structure function is obtained by 
substituting (12) and (10) and the resulting Q(r)  into (5). Integration by parts reduces 
the general formulation to (Hill 1993) 

= -iP1111(r) +Y ~ - ~ [ D 1 1 1 1 ( ~ )  + D A A A A ( Y )  - 6D11,,(~)I d~ 

4 

s: 
+i['-' [ D ~ ~ / \ ~ ( ! ' ) - 3 D ~ ~ y y ( Y ) 1 d y .  (13) 

This result (13) is valid for all Reynolds numbers. Turbulence must be isotropic for 
application of (13) to the pressure variance and the energy-containing range. For 
locally isotropic turbulence, (13) can be used to obtain formulae for the inertial range, 
mean-squared pressure gradient, spectral representations, viscous range, and pressure- 
gradient correlations. A form of (13) that is more convenient for obtaining the last two 
quantities is 

= - ~ 2 - ~ ~ 1 1 ~ 1 ( ~ ) - ~ ~ 2 ~ ~ - 3 [ ~ 1 1 l i ( ~ )  X + D , ~ , ~ ( Y ) - ~ D ~ ~ ~ ~ ( Y ) I  dv 
3 0 

+3 Y- '[D,~,~(Y)  -3%,,(~)l d ~ ,  (14) 

where x is the mean-squared pressure gradient that is derived in $4. Applying the joint 
Gaussian assumption to (13) and (14) and comparing this with previous results that use 
the joint Gaussian assumption verifies (13) and (14) (see Hill 1993, 1994). The 
relationship between a structure function and its spectrum from data along a line can 
be written as (Tatarskii 1971) 

4L 

dr sin (k ,  r )  

where Dg)(r )  = dD,/dr, k, is the wave-vector component along the l-axis, and Yp(k,)  
is normalized so that the pressure variance equals the integral of Y p ( k l )  from k, = 0 
to co. Inserting (13) in (15) and integrating by parts gives 

where 

and 

The three-dimensional wavenumber spectrum is easily obtained from (1 6) because the 
three-dimensional spectrum equals - kF;)(k), which is the usual formula relating 
three- and one-dimensional isotropic scalar spectra; k denotes the magnitude of the 
wave vector. Note that an inertial-range formula is not to be substituted into (15) or 
(16); convergence of the integrals requires replacing (15) with the transform given 
in 96. 

= ~ 1 1 1 , ~ r ~  + D A A A A ( 4  - 6D,,,(r). 
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4. General formulation for the pressure variance, mean-squared pressure 
gradient, and pressure-gradient correlation 

the expression for pressure variance from Batchelor's (1951) equation (2.16): 
One can obtain pressure variance cr: by taking r+oo in (13). Alternatively, we use 

1 1 "  

P 0 

cr: = >(P2) = -zs drr3Q(r). 

Using (10) and (12) in (17) and integrating by parts, we obtain 

(17) 

In 95, we demonstrate convergence of the integral in (18). Of course, (17) and (18) 
require isotropy and are not valid for local isotropy. 

We next consider the mean-squared pressure gradient x defined by 

1 

P 
= -;i (la, ~12).  

x is important in a number of practical problems, including particle dispersion, droplet 
growth, aerosol coagulation, and sound radiated by bubbles. We obtain the 
relationship of x to Dijkl(r). 

Expanding the pressure in a Taylor series, the definition of Dp(r) gives Dp(r) = 

(x/3) r2 as r + 0. Comparing this with the limit r + 0 applied to (1 3) gives 

k' = [: r-3[D1111(r) + D A A A A ( ~ ) - ~ D ~ ~ ~ ~ ( ~ ) I  dr. 

Alternatively, Yaglom (1949) and Batchelor (1951) gave the relationship 

(19) 

which can be obtained from (5). Substitution of (10) and (12) in (20) and integration 
by parts also yields (19). This serves to validate (19). Substitution of (19) in (13) gives 

Yaglom (1949), Batchelor (1951), and Obukhov & Yaglom (1951) showed that the 
correlation tensor of the acceleration vector consists of two terms: one is the pressure- 
gradient correlation that describes acceleration by the pressure gradient, and the other 
is acceleration by viscous friction. Batchelor (1951) and Monin & Yaglom (1975) 
showed that the former is much larger than the latter for very large Reynolds numbers, 
but the latter is the greater for very low Reynolds numbers. Satisfactory expressions for 
the viscous acceleration term were given by Obukhov & Yaglom (1951) and Monin & 
Yaglom (1975). Here, we give new results for the pressure-gradient correlation tensor 
defined by 

(14). 

(21 a) 

(21 b) 

To obtain (21 b) from (21 a) on the basis of local homogeneity, we use the fact that 

1 

P 
A,(r) = ( 3, P a; P )  

=ID 2 P( y ) , i j .  

at a;(p - P)Z = a, a p  - 2 p P  + ~ 2 )  = - 2 ai pa; P .  
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Given local isotropy, the usual formula for an isotropic second-rank tensor, e.g. 
equation (12.29) by Monin & Yaglom (1975), applies to Aij(r). Thus, in our preferred 
coordinate system, Azz(r)  = A3&r) and Aap(r) = 0 if 01 ?= p. Two components, All(r) 
and AAA(r), where h is 2 or 3, are sufficient to determine Aij(r). In addition, the curl of 
the gradient is identically zero, so All(r) and AAA(r) are related by equation (12.70) of 
Monin & Yaglom (1975); therefore, Aij(r) is completely determined by either All(r) or 
A,,(r). Assuming local isotropy, the second-order derivative of Dp(r)  in (21 b) gives 

(22a, b) 
1 

A,,,(r) = -D$?(r), 2r All(r) = @g)(r ) .  

Substituting (14) into (22a, b) gives the general expressions 

5. The r-dependence of the fourth-order velocity structure function 
In this section, we establish some properties of Dijki(r) that are needed for reduction 

of the general formulae in 993 and 4 to specific formulae for asymptotic ranges. We first 
briefly discuss the r-dependence of this fourth-order structure function at very large 
(energy-containing range) and very small (dissipation range) separations ; then we 
discuss the inertial-range r-dependence in detail. 

For large separations, the following is readily obtained from (6a-e) : 

D i j k l ( a )  = 2[Rijk,(O) + cij  c k i  + c i k  0j.i + f l i t  gjkl, (25) 

where cij = ( U i  U j )  (26) 

is the single-point velocity covariance tensor. To obtain (25) from (6a-e), we assumed 
homogeneity, statistical independence of ui and u; for the case in which the distance 
between x and x' becomes infinite, and that ( u i )  = 0. For the moment, let no two of 
the indices 01, y or h be equal; these indices may be 1 , 2  or 3. From isotropy and (25), 
it can be shown that 

D,,(a) = D,AA,(W) = 3D,,,(4 = 3D,,,(4, (27) 

which is not a repetition of (11) because (27) includes, for example, Dllll(co) = 
3D1,,,(00) = 3Dz233(co). From (27), we see that the factor [DAAAA(r)-3Dllyy(r)] in the 
integrand of (18) tends to zero as r+co ; therefore, the integral in (18) converges. Also, 
(27) shows that the first term in (18) can be written in a variety of ways. 
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Using a Taylor series expansion of Daorpp(r), we have the leading-order viscous-range 
formula 

D,,pp(r) = dapr4, (28) 

where dap = ((4 U,Y (a, up)”. (29) 

The derivative moment (29) is a component of an eighth-order tensor. The notation dab 
is not meant to imply a second-rank tensor. Only italic subscripts denote a tensor. For 
future reference, we define 

Kap = dor,/d,2, (30) 

where 4 3 ((alul>”. 

Wyngaard & Tennekes (1970) named K,, the derivative kurtosis and showed that K,, 
varies with the Reynolds number. 

We now turn to the inertial range of Diikl(r). The velocity structure functions given 
by ( ( u , - u U ; ) ~ )  have been studied extensively in connection with the effects of 
intermittency. The relevance to the pressure structure function arises from Dlll1(r) ZE 

((u, - 4)‘). The earliest theory of intermittency was given by Kolmogorov (1962). 
Some experimental studies of Dllll(r) were by Stolovitzky, Sreenivasan & Juneja 
(1993), Anselmet et al. (1984), Antonia, Satyaprakash & Chambers (1982), Van Atta 
& Park (1972), and Van Atta & Chen (1970). The various theories of the intermittency 
effect are negligibly different when applied to Dllll(r). These theories were reviewed by 
Anselmet et al. (1984), and progress continues (She & Leveque 1994). Here we state 
that for the inertial range, 

DllI1(r) = C,, rQ, q = 4/3 -2p/9, (3 1 a,  b) 

where C,, depends on the flow macrostructure and e is the energy dissipation rate per 
unit mass of fluid. Indeed, C,, has dimensions of a length raised to the power of 2p/9. 
In (31 b), we express the exponent q in terms of the intermittency parameter p, which 
is common in many studies. Sreenivasan & Kailasnath (1993) reviewed measurements 
of p and estimated that p = 0.25 f 0.05, to which one may add, among others, a recent 
measurement p = 0.20 by Praskovsky & Oncley (1994) and a recent theoretical value 
p = 2/9 by She & Leveque (1994). For our purposes, it is significant that 2p/9 = 0.06, 
which gives a very small departure from the 4/3 power law. 

Although the empirical basis of (31 a, b) is for the case CL = /3 = 1, the dimensional 
analysis and subsequent averaging over local values of dissipation rate that produce 
(3 1 a, b) are equally valid for all of the non-zero components of DtjkL(r). Therefore, we 
have for the inertial range, 

DaaBB(r) = C,, €‘I3 rq. (32) 
We define 

(33) 

For instance, for r in the inertial range, we have 

HZZ = D Z Z Z Z ( r ) / D l l l l ( r )  = D3333(r)/D1111(r) 

= 3D2233(r)/D1~~i(r) = H33 = 3Hz3 = 3H3% 

H12 = D l l Z Z ( r ) / D l l l l ( r )  = D1133(r)/D1111(r) 
= H,, = H13 = H3,. 

Although the Cap have macrostructure dependence, they very likely all have similar 
macrostructure dependence such that the Hap are universal constants. 
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(32) at r = t,, so that 

Consider the dimensionless structure function components, 

Inner scales t,, are defined by equating viscous- and inertial-range formulae (28) and 

(34) 413 d U(4-q). 8.p = (Cape / ap) 

D"aapp(rap) ~ a t . z p f i ( r ) / ~ a p e ~ ~ ~ e ~ p ,  (3 5)  
as functions of rap = r / t a p  In their viscous ranges and in their inertial ranges, the 
dimensionless structure functions (35) are equal to r$ and r'&, respectively, for all 01 and 
p, and in these ranges they are independent of the Reynolds number; they differ in their 
transition between these ranges. The shape of this transition might depend on the 
Reynolds number. Use of Kolmogorov scaling, that is using the Kolmogorov 
microscale in place of tap, produces scaled viscous-range formulae proportional to Kap. 
The Kap are not necessarily equal for differing 01 and /3, and the K,, depend on the 
Reynolds number. 

The ratio of derivative moments, dap, is defined by 

A m p  dap/dll. (36) 

The A ,  are universal constants at high Reynolds numbers. The ratios of inner scales tap 
are also universal constants : 

tap/tll = (Hap/Azp)1'(4-q). 

For use in the next section, we define the universal constants h, by 

(37) 
Henceforth, we will not state which of our equations require the phenomenological 

inertial-range equations (31 a,  b) and (32) because this requirement is obvious from the 
appearance in an equation of one or more of the parameters e, q, p, Cap, Hap, trip, or 
hap (or Hp,  Nap, map, which are defined later). 

h = (1(2-!7)/(4-!7) P I ( 4 - Q )  = (/ /[ ) 2  = H (' /[ )IT--". aB - a, a, up ap 11 up a, 11 

6. Asymptotic formulae for the pressure structure function 
We first discuss the asymptotic formulae for Dp(r)  for the inertial and dissipation 

ranges. At sufficiently large separations in the energy-containing range, Dp(r)  z 
Dp(co), which is twice the pressure variance that is given in (17) and (18). 

To obtain DP(r) in the dissipation range, we use a Taylor series expansion of Q(r).  
Substituting this expansion in (5)  gives, as r+O,  

(38) 

Thus, Dp(r)  is quadratic at the origin, as is required by a Taylor series expansion of the 
pressure. Using (28) in (12) and the result in ( lo ) ,  or from (14), we have 

Dp(r) = +xr2 -&Q(O) r4 + . . . . 

where the derivative moments dap are defined in (29), and dZ3 can be substituted for 
dAA/3. Here, we define 

h, 1 + $AAA - 3A1,, (39) 

which is a universal constant at high Reynolds numbers. The first term on the right- 
hand side (38) is the viscous-range asymptotic formula for r+O, but both terms are 
important in the study of pressure-gradient correlations. 



Pressure structure functions and spectra 257 

We now consider the inertial range. Substituting (32) in (13) gives 

Dp(r)  = H p  C,, s4l3rq = HPDlll1(r). (404 b) 

Equation (40b) follows from (40a) by use of (31), and H p  is a universal constant 
defined by 

(41 4 

The approximation (41 b) is (41 a)  given to the lowest order in p. We also obtained the 
result (40a) by using (lo), (12), and (32) to determine the inertial-range formula for 
Q(r), and substituting it in (5). This verifies (40a). If we neglect intermittency effects 
(take ,u = 0), then C,, is a universal constant rather than having macrostructure 
dependence, and we define a new universal constant C, = HPCl1;  we obtain the 
simpler results 

D A r )  % P l l l l ( r )  + 3DA,dr) - 15D11,Jr) (42 4 
(42 b) % C,  e4I3 P I 3 .  

Since Dp(r)  > 0, (40a, b) give the bound H p  > 0 on the relative values of the structure- 
function components. This bound does not derive from kinematics alone; it results 
from use of the Navier-Stokes equation. 

The inner scale L p  of the pressure structure function is defined by equating (40a) and 
the first term of (38) at r = L,. We obtain 

L p  = (3H, C,, e413/x)z-q.  (43) 

The relationship between the structure function and the spatial spectrum from data 
along a line is (Tatarskii 1971) 

dr cos (k, r)  Dg)(r).  (44) 

We have chosen the relationship given by Tatarskii (1971) that converges for 
1 < q < 2. Substituting (40a) in (44) gives the inertial-range formula 

Yp(k,)  = x-' T(q+ 1) cos [$(q- l)] H p  C,, e4I3 k-'-l 1 '  

Y,(k,) z 0.328CP e4I3 k-'I3 1 '  

(45) 

(46) 

For q = 4/3 and C, = HPCl1,  we have 

The inertial range of the three-dimensional wavenumber spectrum equals - k F;)(k), 
which is (45) multiplied by (q+ 1) and with k, replaced by k ;  in the case of (46), (q+ 1) 
becomes 7/3. 

7. Asymptotic formulae for the mean-squared pressure gradient and the 
pressure-gradient correlation 

We reduce the expression (19) for the mean-squared pressure gradient x so that 
empirical knowledge combined with measurements of u1 alone can give x, and we 
further reduce it so that estimates of Reynolds number and energy dissipation rate 
suffice for estimation of x in cases of large Reynolds numbers. 



258 R. J .  Hill and J .  M .  Wilczak 

We define 

Empirical determination of H, as a function of the Reynolds number allows x to be 
obtained from measurements of u, alone because 

r m  
x = 4Hx J r-3D1111(r)dr. 

0 

Since Dllll(r) > 0 and x > 0, from (48) or (19) we have the bound H, > 0 on the 
relative values of the integrals of the structure function components in (47). 

We now consider the case of low Reynolds numbers. Taylor’s scale A, of the velocity 
correlation is given from 

Batchelor (195 1) similarly defined the pressure lengthscale A, from 

A: = all/d,. (49) 

(50) A; = a~l/((a, P)2) = 3a;,/x. 

For low Reynolds numbers, data for Dllll(r) are shown in figure 1 in Batchelor (1951). 
Using these data in (48) and substituting the definitions (49) and (50), we obtain 

H, = 0. 18(A,/A,)2, (51) 

where the coefficient 0.18 in (51) is negligibly different from that obtained from the 
assumption of joint Gaussian velocities (Hill 1994). Values of A,/h, have been 
measured in dispersion experiments for low Reynolds numbers. As summarized by 
Monin & Yaglom (1975), these values of A,/A, scatter from 0.4 to 1.0. Numerical 
simulation of the Navier-Stokes equation would be more effective for obtaining H, for 
low to moderate Reynolds numbers. Numerical simulation by Schumann & Patterson 
(1978) gave the value A,/A, x 2-1/2 for very low Reynolds numbers; this is the same 
as the value obtained from the assumption of joint Gaussian velocities by Uberoi 
(1954) and Hill (1994), and it is slightly smaller than the value given by Batchelor 
(1951). Therefore, for very low Reynolds numbers, (51) gives H, z 0.36. 

We now turn to the case of large Reynolds numbers such that a substantial inertial 
range exists. Using (35), we have 

where (53) 

For large enough Reynolds number, the energy-containing range makes a negligible 
contribution to (53). Let the viscous-range contribution to (53) be the integral over rap 
less than some chosen number. This number is taken to be independent of a and /3 and 
is significantly less than unity. Let the inertial-range contribution to (53) be the integral 
for rap greater than some chosen number that is independent of a and /3 and is 
significantly greater than unity. From (53) and (35), we see that these contributions to 
jVap from both the inertial and viscous ranges are independent of a and /3 because 
Daapp(rap) = r$ in the viscous range and D”zaPp(raP) = r‘& in the inertial range. Thus, for 
various choices of a and p, the NaB differ only because of differences in the transition 
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between inertial and viscous ranges of the various baapp(rap). The Nap are dimensionless 
numbers of order unity. For example, we obtain Nap = 3/2 from the ad hoc formula 

baapp(rap) = r:p( 1 + ~ & ) ( 9 - ~ ) / ~ .  (54) 

This formula (54) interpolates - between the asymptotic formulae in the viscous and 
inertial ranges where DVpp(rap) equals r$ and rzp, respectively. Since the Nap depend on 
the shape of the transition between inertial and viscous ranges, they might depend on 
the Reynolds number. We now define 

map Nap/N11. (55 )  

The map depend on the relative shapes of the viscous-to-inertial-range transition, and 
the map are therefore presumed to be independent of the Reynolds number, or very 
nearly so, and close to unity. 

Substituting (52) and (55 )  in (47) gives 

Hx = 1 + m,, h,, - 6m,, A,,, (56)  

where the universal constants h,, and h,, are defined in (37). Thus, H, is a universal 
constant for large Reynolds numbers, and H, need be determined for only one 
sufficiently large Reynolds number. By relating H, to h,, and h,, in (56),  we show that 
H, depends on the ratios of derivative moments nap and ratios of inertial-range levels 
Hap as in (37), with little effect from the details of the transition between inertial and 
viscous ranges as parameterized by map. 

Substituting (52) in (48) gives, for large Reynolds numbers, 

x = 4N1, H, C,, e4l3 tq-' 11 (57 a )  
(57 b) 

where E = 15vd,, Y is kinematic viscosity, and (57b) is obtained from (57a) using (30) 
and (34). Experiments can establish K,, and N,, as functions of the Reynolds number. 
Wyngaard & Tennekes (1970) gave this information for K,,. In the absence of 
measurements, N,, can be estimated to be about 3/2, as we obtained from (53 )  and 
(54). A measurement of the inertial range of Dllll(r) gives a value of C,, e413 for use in 
(57b); E can be estimated from this inertial range of Dllll(r), or E can be estimated by 
other means, including from the inertial range of the second-order structure function. 
The estimate of E and a measurement of (T,, give the Reynolds number, from which K,, 
and N,,  can be obtained. If a measurement of H, is performed at a high Reynolds 
number, then the required empirical knowledge will be available such that for all high- 
Reynolds-number turbulence, (57b) gives an estimate of x from measurements no more 
complicated than the inertial range of Dllll(r). The explicit dependence of (57b) on E 

and v is approximately v-1/2 e3I2, but there is also implicit dependence on E and Y from 
the Reynolds-number dependencies of the other quantities. 

= 4N1, H,( C,, &3)2/(4-9) (€/ 1 5 Y ) 2 ( 2 - - 9 ) / ( 4 - - 9 )  K ( 2 - 4 ) / ( 4 - 4 )  11 
9 

Substituting (57a) in (43), we obtain for the pressure inner scale 

If H p  differs greatly from 2Hx (taking N,, z 3/2), then L', differs greatly from L',,. Then 
part of the inertial range of Dp(r)  coincides with the viscous range of Dllll(r), or vice 
versa. This strange possibility contradicts the notion that pressure differences and 
velocity differences are interdependent. This strange possibility suggests that L', and L',, 
are of the same order of magnitude and, therefore, that 3HP/4N,,H, is of the order 
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of unity. If so, a measurement of H p  gives a rough estimate of H,. Therefore, for the 
purpose of roughly estimating the mean-squared pressure gradient, we can replace the 
factor 4N1, H, in (57b) with 3Hp. Because the estimate is rough, we further simplify by 
using ,u = 0; we then obtain 

R. J. Hill and J. M .  Wilczak 

x M 3Hp(C,, e413)3’4 ( e / 1 5 ~ ) ” ~  K;i4, (59 4 
wherein the required new empirical knowledge is Hp, which requires only inertial-range 
measurements. On the other hand, to make use of (57b) requires empirically 
determined values of N,, and H,; obtaining these values requires both inertial- and 
dissipation-range measurements. We can express (59 a)  in terms of the inertial-range 
flatness factor F = C,,/C,Z, where C, is the Kolmogorov constant of the second-order 
structure function of the longitudinal velocity component. We use the value C, = 2, as 
recommended by Yaglom (1981). We then have from (59a) that 

(59 b) x M 2.2H P e3I2 v-li2 F3I4 Kii4. 

For Reynolds number varying from low values observed in the laboratory to high 
values observed in the atmospheric surface layer, Wyngaard & Tennekes (1970) 
showed that K,, varies from about 4 to 40 and Van Atta & Chen (1970) showed that F 
varies from about 3 to 10. These observations imply that the factor F3/4K;i3 in (59b) 
increases by a factor of about 4 over the same range of Reynolds numbers. Estimates 
of x on the basis of the assumption of joint Gaussian velocities or velocity derivatives 
(Yaglom 1949; Batchelor 1951; Hill 1994) do not have this Reynolds-number 
dependence, and these estimates are too small by the above-mentioned factor of about 
4 for the case of the high Reynolds numbers observed in the atmospheric surface layer. 

We now establish asymptotic formulae and lengthscales relevant to the pressure- 
gradient correlation Aij(r). For the viscous range, we differentiate (38), as required in 
(22a, b), to obtain 

A,,(r) = +X-nadllhQr2+.-. = +x( 1-r2/2Ag+...), (60a, b) 

A: = x/6n,d1, hQ. (61) 
where n, = 6, n, = n3 = 2, and 

The length A, is the spacing at which A J r )  M A,,(0)/2; A, is smaller than A, or A,. 
For low Reynolds numbers, we use (30), (49), and (50) in (61) to obtain 

A, = h,/[2(hp/h,)2 n, hQ Kll]liZ M hT/(3n, hg)l/’. (62a, b) 

To obtain (62b) from (62a), we use A,/& M 2-lI2 and K,, M 3, as is appropriate for 
low Reynolds numbers. 

For large Reynolds numbers, we use (57a) in (61) to obtain 

A, = (2N,, HX/3n, hQ)ll2 l,,. (63) 

Using (58), we can also relate A, to lp. 
For the inertial range, we substitute (40a, b) into (22a, b) to obtain 

A,,W = n: HP r-2 4111(r) = fx[n:(eP/r)2-ql ,  (64a, b) 

where n; = nj = 4/2 and n; = (4-  l)ni. The quantity in square brackets in (64b) 
expresses A,,(r) as a fraction of A,,(O) = x/3. For the inertial range, we see that A,,(r) 
is positive and decreases approximately as Y - ~ ‘ ~ ,  and that All(r) is about one-third of 

Consider the transition range between the initial decrease (60b) at small r ,  where 
A,,W. 
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All (r )  decreases more rapidly than AJr) ,  and the inertial range (64a, b), where All (r )  
and AAA(r) are both positive and decreasing. Whether AAA(r) and All(r)  are 
monotonically decreasing or have local minima or even negative values depends on the 
narrowness of the transition between the viscous and inertial ranges of Dp(r) ;  Al l ( r )  is 
more sensitive to the details of this transition than is AAA(r). The narrowness of the 
transition is parameterized by l p / A l .  From our assumption that lp and l,, are of the 
same order of magnitude, we see from (58) and (63) that the parameter (Hx/6h,)'/2 is 
important to determining l p / A l .  It seems likely that Dg)(r)  is monotonically increasing 
in the transition between its increase as rl in the viscous range and as r*-l in the inertial 
range. If so, Dg)(r)  is positive and monotonically increasing from r = 0 to r at the large- 
scale end of the inertial range and, from (22a), AAA(r) is positive and monotonically 
decreasing at these r.  Then A'$(r) < 0 and (22a, b) require All (r )  < AAA(r). Fur- 
thermore, if the transition is sufficiently narrow (we roughly estimate l p / A l  < 2.7), 
then All (r )  can have negative values in the transition. From (60b), this must occur 
at r > A,, and All(r)  must cross zero again to become positive in the inertial range, 
as required by (64a, b). Obukhov & Yaglom (1951) obtained this same behaviour 
of locally negative All (r )  on the basis of the assumption of joint Gaussian velocity 
derivatives ; that is, the joint Gaussian assumption produces a sufficiently narrow 
transition. 

8. Sensitivity to departures from isotropy and incompressibility 
George, Beuther & Arndt (1984) measured the pressure spectrum in the mixing layer 

of an axisymmetric jet and compared it with theory. They showed that their spectrum 
is caused by three terms that they called (i) 2nd-moment turbulent-shear interaction, 
(ii) 3rd-moment turbulence-shear interaction, and (iii) turbulence-turbulence inter- 
action. Our Dp(r)  is caused by only this last (iii) interaction. Within the inertial range 
observed by George et al. (1984), we deduct their error spectrum and their spectrum 
of the combined turbulence-shear interactions from their measured pressure spectrum. 
We thereby obtain that the portion of their measured spectrum attributable to the 
turbulence-turbulence interaction is a factor of about 1.5 greater than their 
theoretical turbulence-turbulence interaction spectrum. That is, judging by comparison 
of the theoretical curves and measured spectra in their figure 15, we have that 

Dp(r)  z 1.5 [Dl,(r)l2, where Dll (r )  = ( ( u l - u i ) 2 ) .  

The second-order structure function appears because George et al. (1984) used 
Batchelor's (1 95 1) formula for the turbulence-turbulence interaction. 

Antonia et al. (1982) obtained the inertial-range flatness factor Dl l l l ( r ) / [D l l ( r ) ]2  z 
4.5; this was obtained from an axisymmetric jet having nearly the same Reynolds 
number (based on nozzle diameter d and exit velocity) as in the experiment by George 
et al. (1984), but Antonia et al. used the downstream position 50d, whereas George 
et al. used 1.5d and 3.0d. Therefore, we assume that the flatness factor was about 4.5 in 
the experiment by George et al. Further support for a flatness factor of 4.5 is obtained 
by calculating the Reynolds number (based on Taylor's scale) for the data by George 
et al. (1984), thereby obtaining the flatness from figure 12 by Antonia et al. (1982). 

Using this estimate of the flatness factor and the observation from the George et al. 
data that Dp(r)  z 1.5 [D,,(r)I2, we obtain Dp(r)  z Dll11(r)/3 in the inertial range, 
implying from (40b) that H p  z 1/3. Further support for Hp z 1/3 can be obtained 
from the numerical simulations by Fung et al. (1992) and MCtais & Lesieur (1992). 
They calculated pressure spectra that show inertial ranges and they stated their values 
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of the Kolmogorov constant. However, they did not give a value of the inertial-range 
flatness factor ; consistent with their moderate Reynolds numbers, we assume that this 
factor is 3. In this case, we obtain H p  = 0.327 and 0.338 from the simulations by Fung 
et al. (1992) and Metais & Lesieur (1992), respectively. If H p  FZ 1/3, then the three 
terms in (42a) cancel each other to produce a Dp(r)  that is about five times smaller than 
the first term in (42a). From measured values of HhA and H I ,  given in $9, we find that 
if H p  FZ 1/3 then Dp(r) is respectively about 14 and 19 times smaller than the second 
and third terms in (42a). We introduce the notion of a flow being sufficiently isotropic 
(or locally isotropic) for Dp(r)  to be calculated from Dijkl(r) to within some chosen 
accuracy. The inertial-range formula (42 a)  gives a stringent requirement on sufficiency 
of local isotropy because Dp(r)  is so much smaller than the individual terms in (42a). 
The formulae for the viscous range of Dp(r) and the mean-square pressure gradient are 
also sensitive to the accuracy of isotropy. Hill (1993) shows that the theory of 
1948-1951 has this same sensitivity to local isotropy of data for the same reasons. 

We note that even if a flow is sufficiently isotropic, or sufficiently locally isotropic at 
some r, velocity data can be insufficiently isotropic because of imperfections in the 
measurement process (Karyakin, Kuznetsov & Praskovskii 199 1). For instance, when 
the energy-containing range is anisotropic, use of Taylor’s hypothesis can result in 
measured local anisotropy even if the flow has accurate local isotropy (Hill 1995). Care 
must therefore be exercised when using Taylor’s hypothesis to obtain fourth-order 
velocity structure functions for use in (40~1, b). Recent measurements of the approach 
to local isotropy are described by Saddoughi & Veeravalli (1994). 

On the basis of our discussion of (58), we obtained that 4N,, Hx is of the order of 
3Hp for large Reynolds numbers. Also, we obtained N,,  FZ 3/2. If our estimate that 
H p  FZ 1/3 is correct, then we have that Hx is about 0.2 for large Reynolds numbers. If 
so, then the integrals in the numerator of (47) cancel to give a value that is about 20 % 
of the first term in the numerator of (47) and is perhaps a yet smaller percentage of the 
largest term, whichever term that may be. (For instance, according to the joint 
Gaussian assumption, the third term in the numerator of (47) is almost - 3  times the 
first term (cf. Hill 1994).) Hence, we expect that Hx will be difficult to obtain using (47) 
and measurements of Dijkl(r), and that measurements must accurately obey local 
isotropy for use in (47). 

Incompressibility is a very important assumption in our derivations; it produces 
great simplification relative to the case of compressible fluid flow. To derive the 
pressure structure function and pressure spectrum for the case of compressibility 
requires that we use the hydrodynamics equations for the compressible case. The 
derivation would be much more complicated than that presented in this paper. 
However, some compressibility effects can be expressed in terms of the non-vanishing 
of the quantity Mijkl(r),ijkl. Hill (1 993) showed that neglecting Mijkl(r),ijkl requires 
increasingly stringent accuracy of the incompressibility condition with increasing 
Reynolds number and with decreasing r within the inertial range. 

9. Experiment 
We examined data from the atmospheric surface layer to determine the values of HA, 

and H,,. The data were obtained at a flat agricultural site having nearly uniform 
surface characteristics over a fetch of more than 1 km; the site and experiment are 
described by Oncley (1992). To determine HA, and H,,, we need simultaneous 
measurement of all three components of velocity. At least two components must be 
measured at a single spatial location. We obtained all three components at a single 
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FIGURE 1 .  Dll(r) and Dllll(r) as functions of lag and r,  as well as 413 and 213 power laws, 
Dl l ( r )  was multiplied by 3 to avoid crossover of all curves within the inertial range. 

location 7 m above ground using a three-axis sonic anemometer having 0.2 m gaps 
between transducers. This anemometer is described by Zhang et al. (1986). The data 
were sampled at 20 Hz. Each sample is an average over 20 sonic pulses, so Taylor's 
hypothesis implies a spatial averaging along the streamwise direction. Data from three 
stationary 60 min. periods were analysed. The stabilities for these three periods were 
nearly neutral ( z / L ,  = O.OOl), slightly stable ( z /L ,  = 0.04), and moderately unstable 
( z /Lo  = -0.09), where z is height and Lo is Obukhov length. Of the three periods, the 
unstable period displayed inertial-subrange behaviour over the broadest range of 
lengthscales, and we present data only from this run, although the results from all three 
periods are similar. 

For the unstable data run, the Obukhov length was -80 m and the wind speed at 
7 m was U = 4.9 m s-'. The velocity covariance tensor in units of (m s - ~ ) ~  was gll = 
0.64, gI2 = 0.054, gI3 = -0.074, C T ~ ~  = 0.59, C T ~ ~  = 0.034, C T ~ ~  = 0.12, where the indices 
1, 2 and 3 respectively denote the streamwise, horizontal cross-stream, and vertical 
components of velocity. Clearly, the turbulence was very anisotropic at large scales. 

Figure 1 shows DIll1(r) and DI1(r). Lag on the abscissa is the number of consecutive 
samples producing spacing r = lag x (U/20 Hz). The 4/3 and 2/3 approximate power 
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FIGURE 2. Ratios of structure function components to the streamwise components 
& l W  and 4 1 1 1 ( 4 .  

laws are evident from about r = 1 m to half the height above ground for Dllll(r) and 
to the height above ground for Dll(r). Of course, the (4/3) + (2 p/9) power law for 
Dllll(r) was established in other experiments (e.g. Van Atta & Chen 1970; Anselmet 
et al. 1984). For r < 1 m, the space-averaging effect of the sonic anemometer causes the 
curves to depart from the power laws. We considered correcting the anemometer for 
this spatial averaging, but the anemometer averages in a complex way and the 
correction would not alter our results. 

The data were selected to maximize the accuracy of Taylor's hypothesis, which was 
used to convert time to space. Indeed, the quantity c i i / U 2 ,  which governs the 
correction to Taylor's hypothesis, is significantly smaller for our data than for the 
moderately unstable atmospheric surface-layer values given by Wyngaard & Clifford 
(1977). Nevertheless, we were concerned that the observed small-scale anisotropy 
might be caused by errors in Taylor's hypothesis. Therefore, we corrected our statistics 
at small spatial scales (lag d 12) using the formulae by Hill (1995). 

In figure 2, we show ratios of structure-function components as corrected for errors 
in Taylor's hypothesis. The curves of (3/4) D.Jr)/D1!(r) and (3/4) D33(r) /Dll(r)  should 
approach unity as local isotropy is approached with decreasing r .  In the apparent 
power-law range, 1 < r < 7 m, these curves are tending toward unity, but show 
considerable anisotropy. The ratios D12(r) /Dll(r) ,  D23(r) /Dll(r) ,  and D13(r) /Dll(r)  
should be zero in locally isotropic turbulence. Although not shown in the figure, the 
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former two ratios are between 0.07 and 0.02 in the observed power-law range and the 
last ratio increases toward zero from -0.2 at r = 7 m to -0.06 at r = 1 m. Because 
D13(r) is related to the momentum flux, it is expected to be negative and increasing 
toward zero with decreasing r .  Also shown in figure 2 are the ratios Dzzzz(r)/Dllll(r), 
D3333(r)/Dllll(r), and 3D2233(r)/D1111(r). These should all have the same value HAh in 
locally isotropic turbulence. Figure 2 shows that they differ and are increasing over the 
large-r half of the observed power-law range. These ratios are nearly constant in the 
range of 4 to 7 lags (1 < r < 2 m), where their values range from 1.2 to 1.6. Likewise, 
the ratios Dllzz(r)/Dllll(r) and Dl133(r)/Dllll(r) should become the universal constant 
H,,  as local isotropy is approached. However, figure 2 shows that they differ and vary 
somewhat in the observed power-law range. Their values are within the range 0.37 to 
0.45. 

Since Dzz(r) /Dll(r)  is closer to its isotropic inertial-range value than is D3,(r) /DIl(r) ,  
presumably because the vertical component of velocity is related to momentum flux, 
we take our estimates of HhA and Hl, from Dzzzz(r) and Dllzz(r), respectively. Using 
lag = 5 and figure 2, we then have that H,, is about 1.5, and obtain that H I ,  is about 
0.43. The statistical uncertainty is negligible compared with the uncertainty caused by 
anisotropy because our 60 min. averages have excellent statistical reliability. The 
correction for errors in Taylor’s hypothesis are small and affect the ratios D,,,,/Dllll, 
D,,,,/D,,,,, and D,,,,/D,,,, more than the other ratios. For instance, at lag = 5, 
D2222/D1111 is increased 2 YO by the correction. Substituting HA, = 1.5 and Hl, = 0.43 
in (41 a), we obtain H p  = -0.26, which is impossible because H p  > 0. The value 
H p  = -0.26 is only 4% of the largest (last) term in (41a). Clearly, we have not 
determined these constants to the accuracy required to determine Hp.  Indeed, if we use 
the data in figure 2 to calculate H p  in all five ways permitted by isotropy, we obtain 
inconsistent values. 

For the case of the assumption of joint Gaussian velocities or velocity derivatives, 
which was used in the theory of 1948-1951, Hill (1993) gave five formulae relating 
Dp(r)  to components of the second-order velocity structure function. Given local 
isotropy, these five formulae must yield the same value of Dp(r).  We evaluated these 
five formulae using our data. We obtain inconsistent values of Dp(r) including negative 
values. Thus, the theory of 1948-1951 and our theory are both sensitive to local 
anisotropy, as was demonstrated by Hill (1993). 

10. Summary and conclusions 
Starting from the concept that statistics of products of pressure differences and of 

such products multiplied by velocity differences should be related to statistics of 
velocity differences, we relate Dp(r)  to Diikl(r). The pressure spectrum and correlation, 
as well as pressure-gradient correlations and mean-squared pressure gradient, therefore 
are also related to Dijkl(r). Because Dp(r) > 0, we have the bounds H p  > 0 and Hx > 0 
on the relative magnitudes of the components of Diikl(r) in the inertial and viscous 
ranges. Our results open a new door to experimentation on pressure statistics in high- 
Reynolds-number turbulence. We derive Dp(r)  without using the assumption of joint 
Gaussian velocities, nor do we use any replacement approximation. This makes our 
method a natural beginning point for pressure-related statistics in compressible fluids 
and in anisotropic turbulence, such as atmospheric turbulence. The formulation is 
compared by Hill (1994) with the formulation obtained using the assumption of joint 
Gaussian velocities. 

By relating Dp(r)  to Dijkl(r), we develop a useful relationship for locally isotropic 
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and locally homogeneous turbulence, even if the energy-containing range is anisotropic 
and inhomogeneous. One component of Dijkz(r) has been the subject of extensive 
experimental and theoretical investigation. As a result, for the inertial range we obtain 
Dp(r)  K r413, as derived by Obukhov (1949) and Batchelor (1951), or slightly different 
from r413, as indicated in (40a, b). The inertial-range proportionality factor H p  given 
in (41 a, b) or (42a) has three terms involving the level of three components of the 
structure function. The three structure-function components should be obtained from 
measurements or from numerical simulation of the Navier-Stokes equation. 

Using the data by George et al. (1984), we obtain the rough estimate that H p  M 1/3, 
which is also the value obtained on the basis of the joint Gaussian assumption (Hill 
1994). If this estimate is accurate, then the discrepancy between the theory of 
1948-1951 and the experiment as shown by George et al. (1984) is attributable to the 
fact that Dllll(r) deviates significantly from its joint Gaussian approximation. 
Numerical simulations by Metais & Lesieur (1992) and Fung et al. (1992) also suggest 
that H p  M 1/3. 

For the case of very low Reynolds numbers, we have estimated that H, M 0.36 on the 
basis of data for Dllll(r) shown by Batchelor (1951) and numerical simulation by 
Schumann & Patterson (1 978). Numerical simulation can give more reliable values of 
H,. For the case of very large Reynolds numbers, we estimate in $8 that Hx M 0.2. 

When possible, it is important to delineate the applicability of assumptions used in 
any theory. In $§8 and 9, we delineate the sensitivity of our asymptotic inertial-range 
formulae to local anisotropy. Such anisotropy is present to some degree in any 
experimental data. We show that H p  is sensitive to the accuracy of local isotropy in any 
given data, and (41 b) expresses the sensitivity of H p  to the inertial-range exponent of 
the structure function components. As shown by Hill (1993), the joint Gaussian 
assumption does not mitigate this sensitivity to local anisotropy of data. Thus, the 
theory of 1948-1951 has sensitivity to anisotropy of data that is commensurate with 
that of the present theory. Hill (1993) noted that use of the theory of 1948-1951 
requires measurement of at least one transverse velocity component, as well as the 
longitudinal component, such that sufficiency of isotropy can be demonstrated. 
Although our theory is challenging to evaluate experimentally, so is the theory of 

In the introduction, we criticized relating Dp(r)  to Rijkz(r) because the subtraction of 
very large values of Rijkl(r) produces relatively small quantities needed for pressure 
statistics. Above, we state that pressure statistics are sensitive to cancellation of terms 
containing components of Dijkl(r). It is important to emphasize that these sensitivities 
are not commensurate. Taken together, (6a )  and (6c)  relate components of Dijkz(r) to 
those of Rijkl(r). Let L be a scale characteristic of the energy-containing range. In the 
inertial range, components of Rijkz(r) are larger than those of Dijkz(r) by factors of 
order ( L / Y ) ~ ’ ~ .  Thus, if we use (6a )  and (6c)  to introduce components of Rijkz(r) into 
our equations, e.g. (42a), then we have amplified the sensitivity to cancellation of terms 
by a factor of (L/r)”l”. For increasing Reynolds number, the factor ( L / Y ) ~ / ~  can increase 
without bound. 

We present the first measured values of the constants HAA and H,,, obtaining HAA = 
1.5 and H,, = 0.43. However, the measurements are not sufficiently accurate to reliably 
obtain H,. Determining H p  requires very accurate measurements of velocity for flows 
exhibiting greater local isotropy. Resolving smaller r would be essential for the 
atmospheric surface layer. More nearly isotropic turbulence at energy-containing 
range scales would be useful. To accurately obtain H,, one must consider even as small 
a correction to Taylor’s hypothesis as was obtained from our data. Our experimental 

1948-1 95 1. 
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results show that there should be caution in future experimental attempts. The other 
universal constants, H, and h,, might also be difficult to measure for the same reasons. 
Each of the sums and differences of structure-function components that appear in our 
formulae can be expressed as a single average; a simple example is, using (1 l), 

Dnn,in(r>-33D11,,(r) = 3 ( [ ( u 2 - ~ 2 ~ - ( ~ 1 - 4 ) ~ 1  (~,-ujY)- 

Although there is no mathematical difference between these two expressions, 
measurement techniques might be devised to exploit the expression on the right-hand 
side. 

Dr Steven Oncley and Dr Thomas Horst kindly provided the velocity data from the 
sonic anemometer. We thank Dr Rod Frehlich and three anonymous referees for their 
very useful comments. This work was partially supported by the Office of Naval 
Research contracts NOOO14-93-F-0038 and NOOO14-93-F-0047. 

Appendix 
Here we derive (4a, b), (7), (8), (9) and (10) on the basis of local homogeneity. Local 

isotropy is not used. Although local homogeneity and local isotropy are often used for 
the case of large Reynolds numbers and inertial-range (or smaller) scales, any result 
derived on the basis of local homogeneity or local isotropy is also valid under 
assumptions of homogeneity or isotropy, respectively, independent of Reynolds 
number or spatial scale. 

Consider any statistic containing at least one difference of a turbulence quantity, e.g. 
(P-P ' )  or (ui--u;), or containing at least one derivative. Local homogeneity means 
that such a statistic is very rapidly varying with respect to r relative to its variation with 
respect to X = (x + x')/2, provided that r is sufficiently small. The operational calculus 
of local homogeneity is that derivatives with respect to xi (and x;) within the averaging 
operation can be commuted to outside the average such that they become derivatives 
with respect to ri (and - rk,  as the case may be); also, derivatives with respect to ri can 
be commuted to inside the average where they may be performed with respect to either 
xi or -x;. A case in point is the following result that we need: 

Q<r> (aij(.i uj) a;,(u; u;)> = ((at  uj) a;/,(uk ul)>lij 

u;>> = ((ui uj> aij(u; ui))jkZ 

= (akz(ui  uj )  a;(u; u;))  = (aij(uk u,) a;,(u; q). 
= ((ui uj> a;j 

(A 1) 

The last step in (A 1 )  is obtained by relabelling the indices. We suppress the dependence 
on X for a statistic that obeys local homogeneity, as does Q(r). 

We now obtain (4a) on the basis of local homogeneity. We note that 

aii a;,(P- P')Z = aii a;,(Pz- ~ P P '  + P 2 )  = - 2aii pa;k P'; (A 2) 

(A 3) 
thus, 

where (A 2) is an identity and (A 3) follows by substitution of (3) in (A 2). Averaging 
(A 3) and using local homogeneity, we obtain 

aii aik(p - = - 2p2 aij(ui uj) a;,(u; u;), 

( ( p -  P')2)liikk = - 2p2Q(r>, (A 4)  

which is equivalent to (4 a). Thus, derivation of (4a) on the basis of local homogeneity 
is as easy and concise as using homogeneity. 
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Performing the divergence of (6e)  and using local homogeneity, we have 

~ ~ ~ ~ ~ ( r ) ~ ~  = ( - (a; .;) uj uk u l )  + ( - (ai ui) a,: ), (A 5)  
where we chose to convert the divergence with respect to r into one with respect to x’ 
inside the leftmost average, and with respect to x in the rightmost average. By 
incompressibility, ai ui = 0 and a; u; = 0, so (7) follows. Performing the fourth-order 
divergence of (6 d ) ,  we see that each of the four terms has one divergence summed over 
its leftmost index. Therefore, each of the four terms in ( 6 d )  vanishes because of (7). 
Therefore, both (7) and (8) are valid on the basis of local homogeneity. 

Performing the fourth-order divergence of (6 b), we obtain 

Si jk l (Y) , i jk l  = ( ( U i  uj - 4 q (Uk uz - u; 4 ) ) , i j k l  (A 6 4  

= - (a,(u, uz) a;,,(u; q + aij(ui Ui) a;,(.; u;)) (A 6c)  

= -2Q(r>, (A 7) 

= ( - ( ~ k ~ ~ - ~ ; , ~ ; ) a ; , ( u ; u ~ ) - ( u ~ u j - u ; u ~ > a ; , ( u ; ~ ; ) ) , ~ j  (A 6 b )  

where obtaining (A 6b, c) from (A 6a)  requires local homogeneity and the calculus of 
differentiation, and (A 7) follows from (A 6c)  using (A 1). Performing the fourth-order 
divergence of (6a)  and substituting ( 8 )  and (A 7 )  yields 

DijklWlijkZ = - 3Sijkl(r)lijkz = 6Q(r), 

which proves (10) on the basis of local homogeneity. 
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